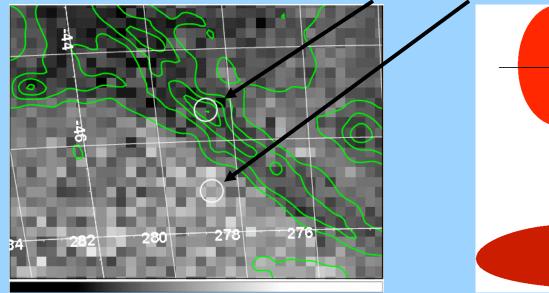
Observing Solar Wind Charge Exchange from a Coronal Mass Ejection

David Henley & Robin Shelton

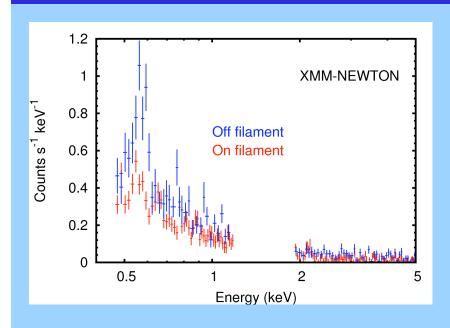


Outline

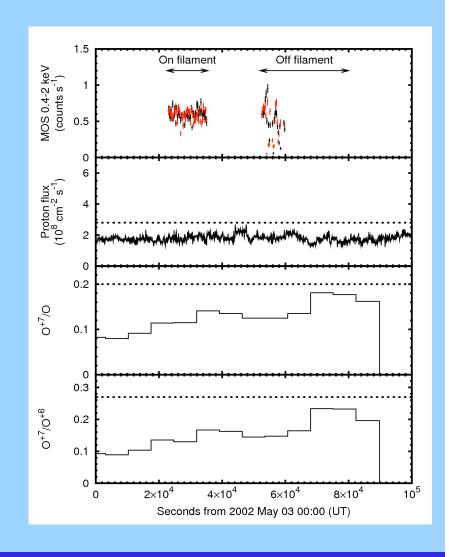
- Shadowing using a nearby absorbing filament
- Comparing XMM and Suzaku results:
 - XMM observations of the filament
 - Suzaku observations from the same directions
 - Different results → SWCX emission in the XMM spectra
- Comparing observations with heliospheric SWCX models
- SWCX emission from a coronal mass ejection
- Summary

Shadowing Observations of the Soft X-ray Background

- Original goal: measure spectrum of LB and halo
 - Constrain kT, ionization state, abundances
- Use shadowing filament at b ~ –45°
 - d = 230 pc
 - XMM & Suzaku observations on and off filament

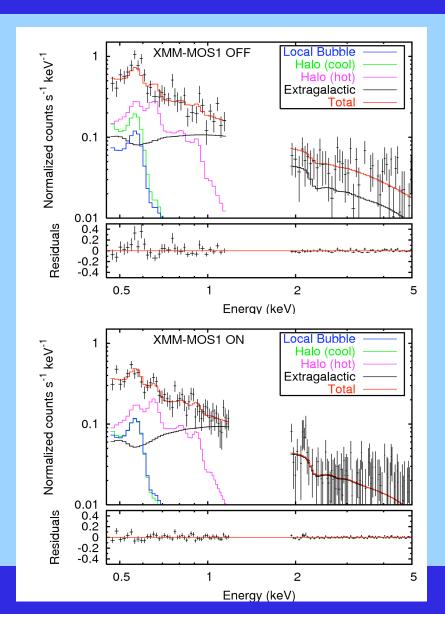

Galactic plane
Filament

Galactic halo


Grayscale: ROSAT 1/4 keV Contours: IRAS 100 micron

XMM-Newton Spectra

(Henley, Shelton & Kuntz 2007)



- No unusual features in SW data
 - No flares
 - SW data at or below typical values
- Did not expect significant SWCX contamination

XMM-Newton Spectra

(Henley, Shelton & Kuntz 2007)

- Spectral model:
 LB + e⁻ (Halo + Extragalactic)
- Include RASS data
- Need 2 halo components

	$\log T(K)$	E.M. (cm ⁻⁶ pc)
LB	6.06	0.018
Halo	5.93	0.17
	6.43	0.011

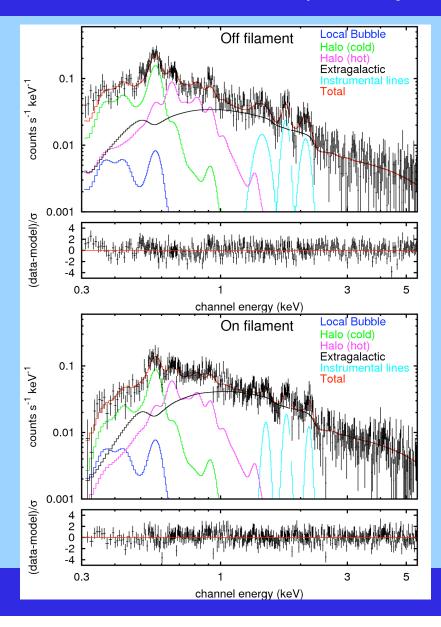
 Reasonable agreement with previous studies

Suzaku Spectra

(Henley & Shelton 2008)

	$\log T(K)$	E.M. (cm ⁻⁶ pc)
LB	5.98	0.0064
Halo	6.11	0.035
	6.50	0.0065

Compare with XMM:

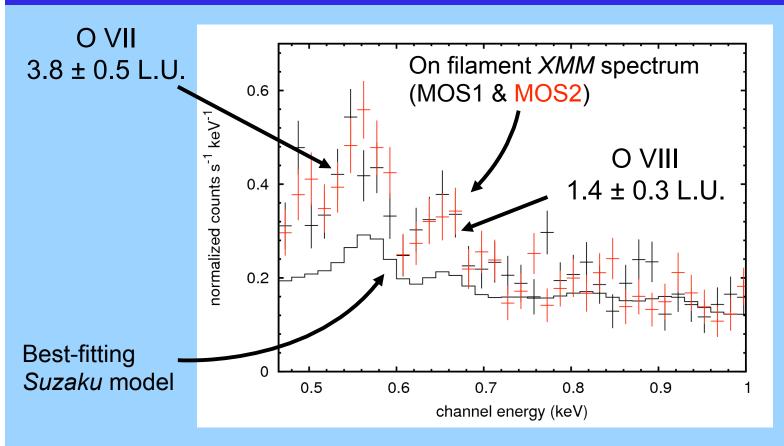

LB	6.06	0.018
Halo	5.93	0.17
	6.43	0.011

Different codes used:

- XMM: APEC for everything
- Suzaku: RS for ROSAT 1/4 keV

Suzaku Spectra

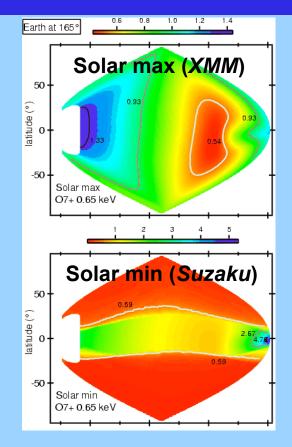
(Henley & Shelton 2008)


	$\log T(K)$	E.M. (cm ⁻⁶ pc)
LB	5.98	0.0064
Halo	6.11	0.035
	6.50	0.0065

Compare with XMM:

LB 6.66 6.30 0.018 0.013 Halo 5.93 5.73 0.17 0.16 6.43 6.56 0.011 0.0038

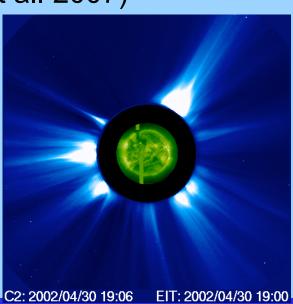
Re-doing the *XMM* analysis does not get rid of the discrepancy

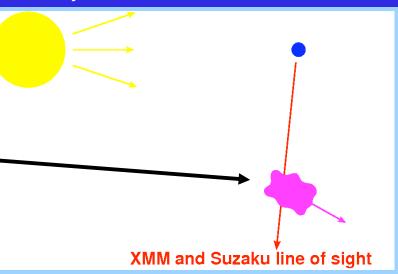

SWCX Emission in XMM Spectra

- Extra emission component in XMM spectra (in addition to LB, halo, extragalactic background)
 - Solar wind charge exchange emission

Comparing Observations with Heliospheric **SWCX Models**

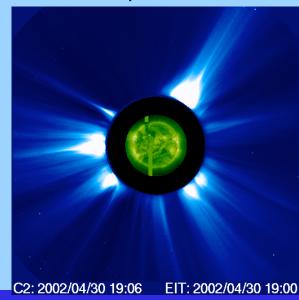
- Koutroumpa et al. model takes into account solar cycle variations
 - More O⁺⁷, O⁺⁸ ions along sight-line at solar max than at solar min
- Model predicts higher O VII & O VIII fluxes for XMM (solar max) than Suzaku (solar min)
- "Ground level" model underpredicts XMM intensities:


Observed XMM excesses: Koutroumpa et al. (2007):

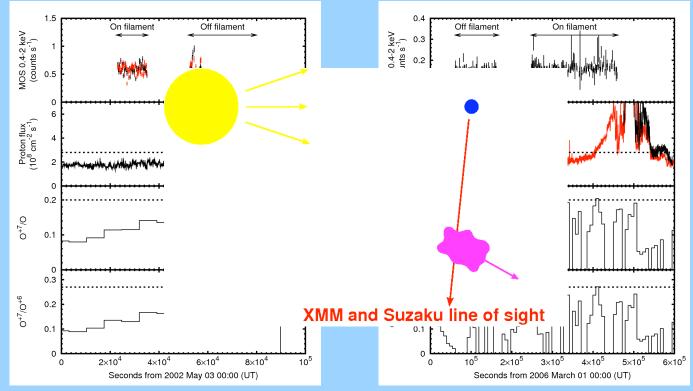

2.32 0.92

O VII (L.U) O VIII (L.U.) 1.4 ± 0.3 3.8 ± 0.5

SWCX emission from a Coronal Mass Ejection (CME)


- Excesses in XMM spectra may be partly due to localized SW enhancement moving across sight-line
- CME emitted ~2.5 days before XMM observations (Koutroumpa et al. 2007)

SWCX emission from a Coronal Mass Ejection (CME)


- Excesses in XMM spectra may be partly due to localized SW enhancement moving across sight-line
- CME emitted ~2.5 days before XMM observations (Koutroumpa et al. 2007)
- Differences between XMM and Suzaku yield SWCX spectrum of a CME
 - Could be used to probe composition of CMEs

Looking for Indications of SWCX in *ACE*Data

- ACE data: no indication that XMM spectra were contaminated
- In general, CMEs will not be seen in ACE data
- Simply inspecting ACE data may be inadequate for determining if SWCX is contaminating a X-ray b/g spectrum

Suzaku

Summary

- XMM and Suzaku shadowing observations of absorbing filament yielded different results
- XMM spectra are contaminated by SWCX emission
 - Emission probably due to CME moving across sight-line
 - Differences between spectra yield SWCX spectrum of a CME
- Contamination not identified in original XMM analysis
 - No indication of SWCX contamination from ACE data
 - Contamination unapparent till we compared with Suzaku
- Inspecting ACE data may be inadequate for identifying SWCX contamination
- Multiple observations essential

Reference: Henley & Shelton, 2008, ApJ, 676, 335